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Abstract

The study of heat conduction in situations involving very short times cannot be set about with the help of Fourier’s
law. This model which cannot be justified in case of local non-equilibrium, leads, in this case, to results which do not
agree with the observations. When the continuity hypothesis is posed, Fourier’s law may nevertheless be adjusted.
Among the different proposed models the Cattaneo—Vernotte model is one of the most credible. It is used in this work.
The resulting hyperbolic problem in a non-homogeneous medium is posed in its primitive form of coupled system of
partial differential equations where the unknowns are the temperature and the flux density, i.e. a four-component vector
field. Thanks to a dot product which is suited to these fields, the existence of two orthogonal families of complex vector-
eigenfunctions is shown. A finite-integral transform technique which is based on this dot product is then applied to the
primitive system. It produces an infinite set of uncoupled ordinary differential equations: a separated expansion form of
the solution vector field is thus obtained. For multifilmed media (1-D cases), it is shown that the notion of transfer
matrix which is familiar in pure diffusion context generalizes naturally. © 2001 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Fourier’s law which joins thermal flux density and
temperature gradient linearly has proved its adequacy in
numerous thermal engineering applications. Neverthe-
less, this law includes some defects and leads to para-
doxical results in problems which involve high rates of
temperature changes. So, Fourier’s model implies an
infinite heat propagation speed and, when applied to
temperature-step problem, it leads to infinite thermal
flux on boundaries. Moreover the model does not allow
interpretation of experimental observations such as
temperature waves in fluids or solids in cryogenic con-
ditions [1-6] or in heterogeneous media at room tem-
perature [7,8]. These observations justify giving up or, at
least, putting right Fourier’s law in certain circum-
stances. Similar defects appear in mass-diffusion for
Fick’s law [9]. These experimental and physical consid-
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erations require addressing the problem of what bounds
to put to this standard constitutive law. Lower limits of
time and space scales have been suggested [10] in
homogeneous media; they are of the order of magnitude
of the Boltzmann relaxation time for the time scale, and
of the order of the mean free path of heat carriers for the
space scale. The weakness of these limits explains why
Fourier’s law gives good results in the numerous cir-
cumstances where the physical observation scales are
clearly higher than the above suggested scales. But the
question of knowing what can be done in the vicinity or
beneath the limits arises. This question includes two
aspects. The first one is fundamental on a physical plane:
how to carry out such studies? In particular, is it possible
to modify Fourier’s law in such a way as to correct the
observed defects? The second side is pragmatic: is the
engineer truly facing situations which force him to give
up Fourier’s law?

Thirty years ago the answer to the last question
would have been no, he is not, because the evidence of
defects was confined to rather exotic circumstances. But,
today, the use of lasers which can deliver a high power
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Nomenclature

A, B; matrix coefficients of the L[-] operator

¢ specific heat

C studied domain boundary

D, D; studied domain, sub-domain

e thickness

L[] partial differential operator

N; kernel matrix of the dot-product

n number of sub-domains

7 unit normal vector

2:(1) transformed function

Q(ﬁ), q(r) flux density in an eigenvalue problem
(in adjoint problem), component

S source-term

t time

T temperature

T vector field (thermal state vector)

U first component of Z

V first component of Z*

W, given boundary condition

Y thermal resistance matrix

Yii» Yi» ¥« thermal resistance

Z complex vector field

Greek symbols

B, B, = (p;citi/ prciir)'’?, local reduced
effusivity

(o, &) transfer matrix

10) flux density (1-D problem)

o flux density

P flux density

A thermal conductivity

u,- 12 = ol - 7o)

p density

T relaxation time

0 vector field

Wy eigenvalue

Subscripts and superscripts

H boundary homogeneous problem
I initial value

i,j sub-domain

k1 eigenelement rank

S pseudo-stationary

o sub-domain external boundary
A finite integral transform

* adjoint problem

during very short time intervals has become a current
practice in several engineering applications such that the
scale bounds may be easily reached. Vedavarz et al. [11]
have analyzed these practical bearings. They conclude
that non-Fourier effects may have significance in pulse-
laser heat treatment of metals or semiconductors, the
same is true in laser surgery or else in thin film appli-
cations for which Qiu and Tien [12] specifically quote
diamond film treatment as Jen and Chieng [13] do. Chen
[14] adds other engineering applications in the field of
nanofabrications. All papers are consistent with the part
of non-Fourier heat conduction in numerous new engi-
neering technologies [15] which are neither limited to
space nor to cryogenic multilayer applications [16].

There are two main ways of studying heat conduction
at microscale.

The first way consists in a return to elementary
mechanisms by applying the laws of mechanics at a
microscopic level. This means is used in molecular dy-
namics simulations. Thus a purely mechanical approach
gives access to the energy carried by atoms. Temperature
and flux densities at a macroscopic level may then be
calculated as soon as time and space scales give a
meaning to these variables. In a crystalline medium, this
technique leads to a limit space scale which is less than
the inter-atomic distance although the limit time scale is
of the order of the oscillating period of the atom [17,18].
Both scales are much lower than the standard thermo-

dynamics limits. Thus molecular dynamics gives access
to the thermal properties of some materials [17,19].
Moreover, transient modeling may be used to check the
validity of macroscopic models [17,18] (we will return to
that point later). However molecular dynamics calcula-
tions present some constraints. On the one hand a re-
alistic model of the interaction potential must be known,
which is not always the case as Hipwell and Tien [20]
noticed and, when it is known, the model must be fitted
to operating conditions [19]. On the other hand, pow-
erful calculation means and efficient numerical schemes
are required since the considered number of atoms is
very large. Most of the time, only a periodic medium
may be studied. Amorphous media seem to be excluded
[21].

The second way is more classical in thermal en-
gineering. It relies on continuity hypothesis. As soon as
this hypothesis is posed, the energy balance and the in-
ternal constitutive law are expressed in differential form.
The latter law often has a purely phenomenological or-
igin but may be reinforced by intermediary notions and
theories (thermodynamics, quanta, etc.). This way is
more familiar to engineers and puts the research of the
solution of the problem on the well-known ground of
partial differential equations. It allows to consider re-
alistic space domains into a single continuous frame-
work. The drawback of this second way is that it implies
two hypothesis steps (a first step for continuity and a
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second one for the constitutive law), thus in case of
deficiency, the origin of the malfunction is not easy to
delimit: is it the continuity hypothesis? is it the flux law?
is it, even, a wrong solution of the mathematical prob-
lem?

The aim of this paper compels us to review contin-
uous macroscopic models in a more detailed way.

2. Continuous macroscopic models

The most pertinent models rely on the idea of non-
locality, in time, of the energy transfer. It was proposed
in [22] and was then generalized in [23]. The phenomena
are governed by a system of three equations which ex-
press:

o firstly, the energy balance which links the internal en-

ergy rate to the flux-density divergence;

e secondly, the definition of the internal energy;

o thirdly, the definition of the flux density.

The last two equations are integro-differential equations
which integrate memory effects through a kernel func-
tion. Assuming the standard equilibrium definition of
the internal energy, this last state variable may be
eliminated between the first two equations and, by
considering then an exponential heat-flux memory ker-
nel, the following two equations (1-D case) are obtained:

or 0

et a0 (A)
dp . OT _

TA/,E—F/La-FQD—O. (B)

Eq. (B) is the constitutive equation which was originally
proposed by Cattaneo [24] and Vernotte [25]. With less
standard definitions of the internal energy, it is possible
to obtain other kinds of models. Among them, the
model, which leads to the modified hyperbolic equation
[26,27] in which a flux-density quadratic term is added to
the equilibrium internal energy, may be mentioned. In
the same way, by using a concept of thermal inertia, a
second relaxation constant 7y, which controls the in-
ternal energy may be introduced. The dual-phase lag
model of Joseph and Preziosi [28] and Tzou [15,29] is
then recovered. In accordance with the interpretation of
the last author, the delayed response between the flux-
density and the temperature gradient (z,,) and between
the temperature gradient and the temperature (the so-
called thermalization constant, t7) finds its origin in
microscopic mechanisms. Honner and Kunes [30]
recently proposed a simplified classification of this dual-
phase lag model which could describe the thermal
behavior of a great variety of homogeneous or hetero-
geneous media. According to [30], when the ratio tr/7,
is less than one unit, the model captures a dominant
mechanism of elastic collision of phonons and the

thermal behavior is wavy, as the ratio approaches the
unit, the inelastic collisions gain weight, which leads to a
more and more diffusive behavior. A ratio greater than
the unit as in Joseph and Preziosi’s model [28] would
correspond to heterogeneous solids. In that case the
model would capture the interaction between different
solid phases acting as heat carriers. The distinction be-
tween micro- and macro-scales is then a question of
agreement only: the observation scale is the macroscopic
scale, smaller scales correspond to heterogeneities and
are microscopic scales. This parallel conduction
(tr/t, > 1) interpretation [30] agrees with the anom-
alous diffusion which was revealed by Hipwel and Tien
[20] as a consequence of the interactions between dif-
ferent phases in a random purely diffusive medium when
the time scale of excitation interacts with the diffusion
time scale of the random medium. No thermal wave can
occur in this case. A similar local scheme, i.e. the para-
bolic two-step model has been proposed by Qiu and
Tien [12] to describe the thermal behavior of metals in
short-pulse laser heating. The electrons and the lattice
appear as two “phases” in local interaction and when
the electron temperature is eliminated between the two
equations which govern the coupled thermal behavior of
both “phases”, the dual-phase lag model is recovered
[31]. In the same way, the hyperbolic two-step model [32]
reduces to the dual-phase lag model if second-order ef-
fects (‘cfp and t2 terms) are missed (see [15]). The previous
analysis shows that two main continuous models
prevail: the Cattaneo—Vernotte model (C-V) and the
dual-phase lag (DPL) model. Owing to their phenome-
nological origin, they must be compared with different
tests. This is what we shall examine now.

Irreversible thermodynamics allows to justify Four-
ier’s law which appears to be the simplest linear form
compatible with the second law. When the medium is
submitted to high temperature gradients, the local equi-
librium hypothesis, which is used for recovering Fouri-
er’s law, fails. The new frame of Extended Irreversible
Thermodynamics [33], thanks to a new definition of the
entropy which now depends on the flux, allows a com-
plementary term to appear in Fourier’s law. This term is
similar to the 7,’s term in Eq. (B) [34]. This test thus
confirms the C—V model. Literature does not show DPL
model recovering through the extended irreversible
thermodynamics theory. However, another thermo-
dynamic frame allows to obtain a model with two re-
laxation constants [35] but, firstly the theory postulates
Fourier’s law, i.e. local equilibrium, and secondly, in the
obtained equations the time constants appear in inverted
positions in comparison with the DPL model (as if 7, was
the thermalization constant and vice versa).

Another kind of test may be found in the microscopic
foundation of continuous laws. Physical deficiencies of
Fourier’s law result from its inability to take account of
the microscopic structure of materials [36]. Thanks to
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statistical methods, the thermodynamic state of a system
which is formed by identical particles may be defined.
Volz [17] thus showed that the C—V law may be recov-
ered in weak non-equilibrium regimes. The same author
goes forward when doing direct transient molecular
dynamics simulations. The solution of the motion
equations of a set of interacting atoms permits him to
determine, by stochastic mean calculations, temperature
and flux density at a given time for the considered set or
for subsets [17,18]. The simulation concerns an argon
crystal. The results are compared to the hyperbolic
equation results (C-V model) and to the modified hy-
perbolic equation [26,27]. There is no agreement with the
latter model and a partial agreement with the C-V
model. The Clausius experiment gives a rather correct
agreement [17,18] but the given temperature wall case
shows a clear disagreement, notably for the time be-
havior of the flux [17].

A third possible approach for determining the ther-
mal energy transfer at microscale is based on phonon
dynamics. Since phonons are particles, their density is
governed by the Boltzmann transport equation, Taver-
nier [37] showed that, by modeling the collision term of
the Boltzmann transport equation with a time relaxation
constant, the flux density law is similar to the C-V
model. In the same way, Qiu an Tien [32] used the BTE
for describing the electron energy transport in metals
and thus justified the hyperbolic two-step model which,
as explained above, comes down to the DPL model.

All these justifications do give some consistence to
the C-V model but the DPL model is not dismissed.
Nevertheless the proofs remain rather theoretical proofs.
They show a consistency between different facets of
physics but they are not final proofs because they need
complementary hypothesis inside the course of demon-
strations. Since the models are, of course, intended to
estimate phenomena which may be truly observed, the
most convincing proof is the experimental proof.

Regarding homogeneous media the main experi-
mental difficulty is the weakness of space and mostly
time scales which must be reached to bring to the fore
non-Fourier effects. As a matter of fact, in the phonon
dynamics approach, the C-V time constant 1, appears
to be of the same order as the Boltzmann relaxation
constant [17,18], i.e., few picoseconds in cryogenic con-
ditions, for setting an order of magnitude. It indeed
depends on the state of aggregation (it is weaker in solids
than in gas or plasma where it reaches several nano-
seconds [30] but it decreases as temperature increases
(see [11])). The thermalization time 77 of the DPL model
is also very small but, in metals, it might become a
hundred times higher than the flux relaxation constant
[15]. In heterogeneous media the parallel conduction
approach [30] shows that in solid-phase media 7, may
reach the nanosecond in composites (and tr is always
higher than t,). The general weakness of characteristic

time scales led experimenters to work in the most com-
fortable conditions regarding the response time of
measuring devices. This is the reason why most results
concern non-Fourier effects either under cryogenic
conditions or in heterogencous media.

The existence of temperature waves was proved as
early as in 1944 [38] in liquid Helium. Since then, nu-
merous authors have observed this phenomenon and
measured wave speeds [1-5]. These observations go
along the same line as the C—V model (or DPL model
when 17/7, < 1) and, recently again, Torczinski [6]
underscores the interface partial reflection of waves in a
two-phase medium. No convincing result of this kind
seems to exist at room temperature in homogeneous
media. Nevertheless, Qiu and Tien experiments [12] on
gold film at room temperature agree with the parabolic
two-step model which indirectly validates the DPL
model when t7/7, > 1. Other experiments at room
temperature concern heterogeneous media. Kaminski [7]
reports 7, values up to 10 s in various porous media,
though Mitra et al. [8] measure, in processed meat, T,
values near 15-16 s. These last results validate the C-V
model in a Clausius-kind experiment but, under a given
temperature boundary condition some irreducible dis-
crepancies remain [8]. We notice that these results do not
agree with the simplified analysis of [30] for parallel
conduction (in solids) but, it is true that processed meat
is far from being a solid mix at nearly room temperature
which is considered by the authors.

At this stage of the bibliography study we may draw
some first conclusions.

The existence of non-Fourier heat conduction is un-
doubted. The associated phenomena appear when the
thermal exciting input which is created either inside the
medium or at the boundaries has a weak time scale when
compared to proper scales of heat carriers. Cattaneo—
Vernotte model is the most credible continuous model
owing to, both, its theoretical support and the experi-
mental results which show a wave-like heat transport.
The dual-phase lag model is interesting in view of its
easy adaptation to a large phenomenological range
which goes from quasi-hyperbolic conduction (t7/7,
< 1) to parallel conduction (t7/7, > 1) undergoing
intermediary regimes of anomalous diffusion.

Nevertheless not everything is perfectly clear. In
particular, it has been observed that under some initial
and/or boundary conditions both models give unsatis-
factory results. For instance some initial conditions
generate an overshooting which characterizes by internal
temperatures which are higher than the initial and
boundary temperatures [31] at the same time. The same
overshooting phenomenon was emphasized by Bai and
Lavine [39] and also Kronberg et al. [40] who call the
boundary conditions in question.

Both models require two initial conditions. When, asin
a majority of studies, the differential problem is posed
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after the flux density is eliminated, the temperature field
and the time-derivative temperature field must be given.
On a mathematical basis, a great variety of fields may be
given, but on a physical basis the given fields must be
observable fields. Thus, very often in the literature con-
cerning the hyperbolic heat equation, equilibrium fields —
which are observed by maintaining medium boundaries at
the same constant temperature for a long time — are given.
A typical transient study consists then in obtaining the
temperature change inside the medium under new
boundary conditions. The response to step-functions has
been widely studied probably because it leads to spec-
tacular results. In this particular case, we should point out
the impossibility of abruptly varying (at time ¢ =0), say,
the temperature of a boundary but, at the same time,
maintaining its time-derivative to a zero value; the re-
sponse will surely retain marks of this impossibility.
Nevertheless, few authors actually considered this aspect
of the problem when studying the response to step-func-
tions and few saw the necessity of using Dirac’s functions
[41,42] in these circumstances. This is nothing but an ex-
ample, but, in a general way improper initial conditions
might explain some unphysical results.

On the other hand, C-V law takes into account the
existence of local non-equilibrium inside the medium,
but, a non-equilibrium situation also exists at all inter-
faces, i.e. at inside interfaces in composite-like media
and at external interfaces (boundaries). This kind of
non-equilibrium has, at first, its origin in space effects,
therefore it exists in stationary regimes as much as in
transient regimes. Using the BTE, Chen [14] showed that
in steady regime the emitted flux from a particle which is
embedded in a host medium was less than the Fourier-
predicted flux, as soon as the particle dimension was less
than the heat carrier mean free path. In a similar way
Jen and Chieng [13] showed that the grain structure of
media or of interfaces between two media modifies the
heat transfer rate. A temperature gap appears at the
interface between the studied diamond film and the sil-
icon substrate; the corresponding thermal resistance
depends both on the structure and on the dimension of
grains near the interface. With the help of a different
methodology, Kronberg et al. [40] obtain a similar
conclusion for boundary conditions and show that Di-
richlet conditions are not compatible with the C-V
model. A third-kind boundary condition must be used
and this condition makes the overshooting anomaly
disappear. Thus, just like Fourier’s constitutive law must
be modified when a medium is subjected to a strong
internal non-equilibrium, a specific constitutive law
must be used at interfaces. A standard thermal resis-
tance model where the thermal resistance value results
from microscopic calculations may be used. Of course,
when two identical media are put into contact, the
thermal resistance vanishes [40]. Inside a non-homo-
geneous medium, such as a composite medium for in-

stance, the interface constitutive law is complemented by
the energy balance equation. For the C-V model, owing
to the fact that the outgoing energy from a given me-
dium immediately enters the adjacent medium, the en-
ergy balance is expressed by the continuity of the flux
density. It would not necessarily be the same in other
contexts. For instance Bai and Lavine [39] suggested a
flux density gap at interfaces as a result of the flux-de-
pendent internal energy. It would be the same in models
which include a coupling between thermal and me-
chanical phenomena. Flux-density preservation at in-
ternal interfaces does not foresee anything about partial
reflections. The results of Frankel et al. [41] in their
study of a two-layered wall clearly show that such re-
flections exist at the interface between two different
media under a continuity condition of both flux and
temperature.

As soon as the model is chosen and the initial and
boundary conditions are well (or not well) posed, its use
for comparing its consequences to experimental or other
results, goes through the solution of a partial differential
problem.

A majority of works focus on linear problems. In
two-dimensional cases [43-45] Green’s function method
[43] or Laplace transform are used. They are associated
with numerical techniques either in the inversion prob-
lem [43] or in the solution of the space problem [45]. The
1-D studies in homogeneous media are the most nu-
merous. For the C-V model, the considered equation is
almost always the hyperbolic heat conduction equation
where the unknown is either the temperature or the flux
density. Standard analytical methods such as Laplace
transform [46,47], Green’s function [42,48] or finite-in-
tegral transform [11] are available. When boundary
conditions concern both temperature and flux density,
the elimination of one of the state variables (either the
flux or the temperature) which is necessary for obtaining
a well-posed problem in the hyperbolic heat conduction
equation context, poses the problem of admitting that
the internal constitutive law is also verified at bound-
aries. Moreover, we have explained above that general-
ized functions must be used when studying the response
to step-functions. An elegant way which suppresses
these difficulties consists in keeping both state variables
in the formulation. It is what is generally done in purely
numerical solutions (see [17] or [49] for examples) but
the same way may be followed in a solution through
Laplace’s method [40]. Standard, or less standard ana-
lytical methods, as the method of characteristics [50], are
always available for 1-D linear problems, nevertheless,
the — at least partial — resort to numerical techniques
may turn out to be useful. Thus, Vedavarz et al. [11]
sometimes used a numerical integration scheme of
the method of characteristics, Qiu and Tien [12]
implemented a Crank—Nikolson scheme in their study of
laser heating of metals, Tzou and Chiu [51] make use of
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the Kutta—Runge method for time-integrating. Tzou
et al. [31], as for them, use a numerical inversion of the
Laplace transformed problem.

Macroscopically non-homogeneous media make
particular difficulties appear. Very few works are de-
voted to this subject. Frankel et al. [41] studied the
thermal response of an adiabatic two-layered wall which
is excited by a time evanescent internal source. They
considered the Cattaneo-Vernotte model in the scope of
a flux formulation of the hyperbolic heat conduction
equation. Thus, the interface flux density continuity
condition is easily written but the temperature continu-
ity condition (only perfect thermal contact is considered)
makes a new kind of interface time-dependent condition
appear. The solution of the problem is searched by using
a finite integral transform which is fitted to the wave
equation. This transform does not separate the vari-
ables: an infinite set of time differential equations which
are coupled to each other appear in the transformed
space. This work shows clearly the present deficiency of
finite integral transform methods in non-Fourier con-
text. The full separation of the space and time variables
appears only in media where the relaxation constant ,,
is the same all over the medium (see [41]).

As a second conclusion of this part of the bibli-
ography study we emphasize the following points.

Some defects of linear model in non-Fourier context
might be linked to the use of improper initial and/or
boundary conditions. Among the methods of solution of
linear models, it seems better to accept methods which
retain both physical state variables (temperature and
flux) because this formulation calls for less hypothesis
and less elaborate mathematical tools (for response to
step-function studies). The finite integral transforms
which have been used until now in hyperbolic heat
conduction are really well fitted to homogeneous media
only because they do not separate the variables in non-
homogeneous media.

In a general way the literature shows that non-
homogenous media have not been studied much in spite
of their technological significance in thin film applica-
tions. It is then justified to take an interest in these
media. First two points are to be considered for studying
the non-Fourier conduction in that case. What is the
chosen internal constitutive law? what is the interface
constitutive law? As soon as these choices are made, the
subsidiary question is: how to formulate the initial and
boundary conditions so as to ensure a physical and
mathematical consistency. Lastly, a method of solution
which fits the resulting mathematical problem must be
found. The relevance of the answers to these questions
must then be given through different validation steps
concerning the solution method, the internal model, the
interface model, etc.

In this work, we are going to choose the Cattaneo—
Vernotte model as internal law and a standard thermal

resistance model as interface constitutive law. In this
first article we limit our objective to set up a new tool of
solution which fits into the non-homogeneous media. In
a subsequent step we will present a validation of the
method and then we will use it in the view of justifying
the internal model choice.

The interest of finite-integral transform methods as it
appears in purely diffusion context [52-56] is in the
easiness of inversion technique. Thanks to the separa-
tion of the variables the solution may be written in the
form of an expansion of the temperature field on a space
eigenfunction basis where each time-dependent coef-
ficient of the development is calculated independently of
other coefficients. This is true in linear conduction
problems, this is also true in some convection and
linearized radiation problems [57] provided the proper
eigenfunctions of the space operator are used. In full
non-linear problems [58] this is not true, of course, be-
cause of the lack of a proper eigenbasis. The following
work is built around the use of the proper eigenbasis of
the linear partial differential operator which governs
both physical state variables, temperature and flux
density in non-Fourier conduction. In a first part it is
showed how to obtain the proper eigenfunctions in a
general 3-D non-homogeneous medium and what is
the new finite integral transform (FIT) which separates
the variables. In a second part we consider the special
case of multilayered walls (1-D problems) and we show
that the known quadrupole methodology remains valid
in this linear non-Fourier context.

3. The 3-D finite integral transform
3.1. Basic governing equations

The studied domain (D) is an assembly of 7 adjoining
passive sub-domain (D;) (Fig. 1). Though it is not a true
limitation, each sub-domain has constant thermal
properties. Inside each sub-domain, the local energy
balance involves

Fig. 1. Sketch of the studied domain.
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These two equations are complemented by two con-
necting laws
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Eq. (2a) expresses the energy balance on the boundary
(C;;) which is common to the adjacent sub-domains (D;)
and (D;), while Eq. (2b) is the contact constitutive law
which includes the thermal resistance y;;.

On the boundary (C) of the domain (D) the limiting
conditions are

T, =y, ®, iig = Wy(P,1), P€C, (3)

knowing that all the C,-boundaries constitute the
external boundary (C) of the studied domain. The
Egs. (1a)-(3) are verified for positive time; at the initial
time, the temperature and the flux density fields are
given in the whole domain:

T,=T'M)), M;eD;UC, i=1n, t=0, (4a)

&, = d(M,)), M, eD,UC;, i=1n, t=0. (4b)

We observe, at this stage, that, by defining the vector
field

T ={T,, i=1,n}, where T, = (T, D1, P, P;3)

the system of equations (la) and (1b) writes

oT

—+L[T]=0

S+ LT =0,

where L[] is a linear partial differential operator. This
operator may be explicited, either in matrix form or in a
semi-analytical form. This latter form will rather be used
in this first part. It writes

1 - -
V.o
pici
L[T] = = i=1ln
PR )
ivz + —
T; T;

3.2. Diagonalization of the operator. Eigenfunctions

Let Z and Z® be two four-components complex
vector fields. Each field is continuous in each sub-do-
main and has sufficient derivability properties with re-

gard to the space variables. The dot-product of the two
fields is defined by:

Z,Z* = /Z’lejdvl7
(z,Z7) ; , Z
where

. T, T, T;
N; = dlag(pichzvza/«;)'

The semi-analytical expression of this dot-product is
n B T o .

7,7)= / (pici[]iVi +-Q;- Ri) duv;,

(z,z) Z; ; 7

where U; (resp. V) is the first component of Z; (resp.
Z}) and Q, - (resp. R;) is a vector which is built with the
three remaining components of Z (resp. Z*). The Z field
is subject to the interfacial conditions (2a) and (2b) and
to the boundary conditions of the homogeneous prob-
lem (which are obtained by setting to zero the right-hand
side of Eq. (3)), whereas the Z* field is subject to the
homologous conditions of the adjoint problem.

The adjoint operator L[] is defined by (Appendix A)

-— VR
viz)=¢ " . i=in
/‘“1ﬂ Ri
——VV, + —
T; T;

with the associated homogeneous conditions

R, -ii; + R, -ii; = 0,

Vi— V= —wRi - iy

Thus, by diagonalizing both operators, that is to say, by

finding the solutions {wy, Z'} and {w}, Z*} of the
eigenvalue problems

L[Z'] = o Z" (5a)
and
L (2] = w;Z", (5b)

where, of course, Z¥ and {Z*’} verify the interfacial
conditions and the homogeneous boundary conditions,
we obtain two eigensets. Some properties of the
eigenelements are given in Appendix B where, in par-
ticular, it is shown that Z* is orthogonal to Z*/ and that,
because of the links between Z and Z*, only one of the
two problems (5a) and (5b) is to be solved.

Since the eigenvector field {Z*} forms a basis for any
vector field, TH, which verifies, the same general math-
ematical properties as Z, the interfacial conditions and
the homogeneous boundary conditions, this field may
expand on this eigenbasis

™ =3 p'Z". (6)
k
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The following section shows how to obtain the pj!
projections and how the solution of the given problem
(1a)—(4b) proceeds.

3.3. The finite integral transform and its use

The linearity of the posed problem permits us to look
for its solution by superposing two fields

T=T15+T"

The field TS = {T3(M;, ), i = 1,n} is a quasi-stationary
field which obeys

V-® =0,

M; € D;
, i=1,n

M; €D,

plcl
LVTS + & =0,

TS verifies also the interfacial conditions (2a) and (2b)
and the full boundary conditions (3). The time is a
dummy parameter in this problem which corresponds to
the standard heat conduction problem in stationary re-
gime. We suppose that its solution is known.

The field T" = {TH(M;, 1), i = 1,1} obeys

H
aaL+L[TH]+S—O (7)
where the source-term S is the time-derivative of the
pseudo-stationary field TS. The field TY verifies the in-
terfacial conditions and the homogeneous boundary
conditions; its initial value is simply the difference be-
tween the initial value of the full field T" and the value of
the quasi-stationary field when the dummy parameter ¢
is 0
TH(M,0) = T'(M)

—T5,(M,0), Me (D), t=0.

Let p,(¢) be the finite integral transform of any field ©
which is defined in the (D) domain. We define this FIT
as the projection of @ on the vector field Z* /(ZF, Z**)

. iz, Sk
bilt) = (ZF 7N Z*k Z/I (PICOV +/~Tiqli'Ri)dvi’ (8)

When applied to the Eq. (7), the finite integral transform
(8) leads to the initial-valued problem

d H
dt +a)kpk +5 =0, (9a)

~T(1,0),2%)
2".27%)

((T'(m)

p(0) = (9b)
Some properties of the L*[-] operator on the one hand,
and the links between the eigenvalues w; and w; on the
other hand, are used for obtaining the second term of
the Eq. (9a). The solution of the problem (9a) and (9b)
writes

ot
A0 = po)e ™ — / Su(s) e n 09 d, (10)
0

Since the vector field T obeys the conditions which
allow to expand it on the eigenbasis Z*, property (6) is
valid. Eq. (6) is thus the inverse transform of (8); as
might be expected, the inverse transform is particularly
straightforward.

The solution of the problem which is defined by the
Egs. (1a)-(4b) may thus be written

T=T+) p(Z
k

3.4. First comments

Throughout the above exposition, the differential
problem is always considered as turning on an unknown
vector field T; the proposed method of solution of the
hyperbolic heat conduction in heterogeneous medium
uses the generalization of the finite integral transform
method to function vector fields. Thus, both funda-
mental physical informations on heat transfer, i.e. the
temperature and the flux densities continuously appear
in the formulation. As already explained in Section 2,
this is an advantage on both physical and mathematical
points of view. We notice that, when building the solu-
tion the same time-coefficient (the integral transform,
Pi(¢)) controls the temperature and the flux density
series expansions; the counterpart is that both fields
must, of course, be known at the initial time.

In the same spirit, the use of a dot product which fits
function vector fields leads easily to the true separation
of the variables: each time coefficient, p}'(¢) is indepen-
dent of other (p!(¢)) coefficients; but, this separability
property is obtained at the cost of an intricacy of
the eigenvalue problem since the eigenelements are
complex-valued elements. As a matter of fact, since the
considered problem is not a self-adjoint problem — a
fundamental difference with the pure thermal diffusion
case — the solution will gain its wave propagating
behavior through the complex eigenvalues.

4. One-dimensional problem

When each sub-domain (D;) has a slender look,
thermal transfers across the (D) domain accept a 1-D
modeling, provided that the boundary and initial con-
ditions allow so.

We now place ourselves in this restricted scope; the
medium is thus formed by the juxtaposition of layers.
The non-Fourier modeling may be justified through the
small value of the layer thicknesses: as a layer thickness
diminishes, the time diffusion scale of this layer reduces
and gets closer to the Vernotte relaxation time. But there
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are limits to the reduction of time diffusion scale through
the space scale since the continuity hypothesis may fall
down. The literature puts this limit slightly beneath the
mean free path of heat carriers (see [17, p. 96]). There-
fore this limit depends on the properties of the medium
itself and of the temperature; when the layer is a true
homogeneous medium — as opposed to porous media
which are seen as homogeneous media at the observa-
tion scale but are heterogeneous at lesser scales — the
limit ranges from a fraction of nanometer to few
nanometers.

In this case the studied wall may be seen as a multi-
filmed coating where, as in the first part, interface
phenomena are taken into account with the help of a
thermal resistance.

4.1. Transfer matrices for hyperbolic conduction

The theoretical justifications given in the first part of
this work remain, of course, valid for 1-D problems; but
since in this case, there remains only one space variable
in the problem, the diagonalization of the operator will
lead to an ordinary differential problem. We should be
able to find an analytical solution of the eigenvalue
problem. We already know that, in pure conduction
context, the T; vector field which has now two compo-
nents 7; and ¢;, permits us to rationally introduce the
transfer matrices [59] which are a rather easy calculation
means for studying the heat transfer in multilayered
walls [55,56,59-61]. We show below that the same is true
for hyperbolic conduction.

By using the local reduced variables which are
proposed in [62], the L[] operator writes, in matrix
form:

LH:{A,-%—FB,}, O<x;<e, i=1,n, (11)
where

_ 0 1/; 10 0
A[7|:ﬂl-/‘[i 0 :|7 BL?|:O l/Tl':|.

The eigenvalue problem, for the L[-] operator — we
remind that only one eigenvalue problem has to be
solved — is explicited by:

dZi
Aia_FBiZi:wZia 0<X[<€i, l.:17}’l7 (123.)

ZH,](O) = Y,-Z,-(e,-), i= l,n — 17 (12b)

where the thermal resistance matrix Y; has the same
form as in pure conduction context

_ |1 —w
v-[t 7]

The external boundary conditions write

Zl(o) 7Yl (q1(0)>7 (12C)

( 0 ):Y - Zo(er). (12d)
qn(en) n+ n n

The analytical solution of Eq. (12a) is

Z(x;) = Exp(xl-Ai’l (ol — B;))Z;(0), (13)

which shows, by setting x; = e;, that the transfer matrix
of the ith layer writes

yi(w,e) = Exp(e,-A[._1 (ol — By)). (14)

What follows is the same as in the pure conduction case
[59-63]; by eliminating the interface unknowns, Z;(0),
thanks to Eq. (12b), the interface i/i + 1 is connected to
the interface i—1/i through the matrix product
Y. 17:(w,e), and, when all the interface unknowns are
eliminated step by step we obtain, owing to Egs. (12c)
and (12d) the final result

0
|:q (e ):| :Yn+1 'yn(waen)’“YiJrl

piw,e) Yoy (w,er) - Y

: [ql(go)}. (15)

The matrix product — in descending order — which
appears in Eq. (15) is the overall transfer matrix of the
multifilmed medium. The eigenvalue equation is then
obtained by canceling the first off-diagonal coefficient of
the overall transfer matrix so that the boundary con-
ditions (12¢) and (12d) are verified for a non-zero flux
density. The corresponding equation is, as in pure con-
duction problems, the characteristic equation.

The methodology coincidence between the pure
conduction case and the hyperbolic conduction case
must not hide a fundamental difference: in the former
case, the eigenelements are real elements, in the latter
case they are complex elements. In this spirit, the
transfer matrix of the ith layer may be explicited ! as

COS J;€; M sin ye;
B
V[(w7 e[) = pio . ) (16)
sin ye; COS ;€;
Hi

where we set

! The fastest method consists in eliminating the flux density,
q:(x;), between the two equations of system (12a) so as to obtain
a differential second-order equation for u;(x;), the first compo-
nent of Z;(x;). Its general solution is trivial; ¢,(x;), is then
calculated thanks to the second equation of system (12a), the
result (16) proceeds by identifying both components of Z;(x;) to
the RHS of Eq. (13).
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= o(l — o).

But, although we defined the matrix coefficients with
trigonometric functions — which strengthens the simi-
larity to purely diffusive matrices [62] — it must be clear
that since @ and y; are complex-valued numbers, sine
and cosine functions are complex-valued functions.
Nevertheless, for media with a small number of layers,
analytical expressions of the overall transfer matrix will
be known, the same will go for the eigenvalue equation.

4.2. Finite integral transform. Solution of 1-D problems

The direct transform writing (8) simplifies because of
the prescribed direction of the flux density. With the
used local reduced variables, it writes

5 (0 =— S [ (50,05 + g (07 ) d,
20 =g 3 [ (B0 St ot ) o
)

By applying this transform to the homogeneous T™
problem which is deduced from the full problem T by
the translation — TS, we obtain Eq. (9a) whose solution is
still given by Eq. (10). Owing to the 1-D character of the
problem, the quasi-stationary field is always analytically
known so that the source-term s, of the Eq. (9a) which
writes now

ors 4 T 6(/)1
k Zk Z*k Z/ ( l at U; ﬁ ot rl‘) d'xl (18)

will always have an analytical expression. In the same
way, if the initial condition is given analytically, the
integral transform p(0) could be analytically calculated
and similarly for the solution pf(z) (Eq. (10)).

This (generally) analytical solutlon of the posed 1-D
problem is thus

T(x,1)

5. Conclusion

A constructive method of solution of hyperbolic
conduction problems in heterogeneous media is de-
scribed in this paper. It distinguishes from other finite
integral transform techniques through the constant use
of both thermal state variables, i.e. temperature and flux
density, thanks to a formalism which retains throughout
its development, the notion of coupled system of partial
differential equations and the associated notion of
solution vector-function. The finite integral transform

which is based on a dot product which suits these vector-
functions gives to the technique separability properties
of time and space variables which have not been ex-
ploited until now. Thus, in the transformed space, not
only is the (scalar) coefficient of a given rank in the ex-
pansion of the solution not coupled to the coefficients of
other ranks, but also this coeflicient is the same for the
temperature as for the three components (3D problems)
of the flux density. Both state variables are thus ob-
tained through the same unitary formulation.

For 1D problems (multifilmed media) we showed
that the notion of transfer matrix which is widely used in
purely conduction problems generalizes very naturally
to the hyperbolic conduction case. The analytical pro-
cessing of hyperbolic 1D problems in non-homogeneous
media is from then on conceivable.

The continuous use of state variables requires the
knowledge of the initial temperature and flux density
fields, instead of temperature and temperature time-de-
rivative fields (for most standard situations) or flux
density and flux density time-derivative (for special ap-
plications in 1D problems). But, not only is this re-
quirement not a difficulty since all problems which are
considered in the literature on the subject use initial
conditions stemming from stationary regimes (where, of
course, temperature gradients and therefore the flux
density are known as soon as the temperature field is
given) but also this requirement calls for less hypothesis
than in standard hyperbolic equation applications;
moreover it bypasses the mathematical difficulty of using
generalized functions when studying the response to
step-functions.

The application prospects of this work seem to be
interesting from different points of view.

Firstly, the used approach, in which integral trans-
forms are applied to vector-functions, might open a new
way for studying transient problems which are governed
by a set of linearly coupled partial differential equations.

Secondly, the applications of this approach to con-
duction problems in non-Fourier context might prove to
be useful in comparing the results of macroscopic linear
models (assuming the continuity hypothesis) to the results
of microscopic or molecular models (not assuming the
continuity hypothesis). Such results are already available
in homogeneous media and even though this new method
has been firstly built to allow the separation of variables in
non-homogeneous media, it can also provide interesting
results in homogeneous media. We propose, in a following
paper to test, on this basis, the pertinence of the Cattaneo—
Vernotte internal constitutive law.

Appendix A. Adjoint operator

The L[] and L[] operators are linked together by the
basic relationship
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(L[Z],Z") = (Z,L"[Z"]), (A1)
where Z and Z* are complex vector piecewise continu-
ous and derivable fields.

The interface conditions (2a) and (2b) are verified by
the Z field and the corresponding homogeneous
boundary conditions are

U, — y@l(ja My =0, PeC,. (A.2)

Let L*[-] be the following operator:

-— VR
Ci
L[z = f’ I (A3)
__’VV‘__’__I
T i

where the Z* field verifies the following interface and
boundary conditions:

ﬁ[ . ﬁ,j + ﬁj . ﬁj,' = 0, Pe C’!’ (A4a)
V; — V = _yl]R . lj, P S C,'j, (A4b)
V,+yR, 0, =0 PeC, (A.4c)

We notice that these conditions are deduced from the
corresponding conditions of the problem by a change in
the sign of the flux density.

The LHS of the Eq. (A.1) may

wzz)-Y | {(%.Q)V, QR

be written

+(VU) R,

i=1 - A

(A.5)

By using the identity

we make the divergence of the 17,-(3,- vector, in the first
term of the RHS of Eq. (A.5), appear. Then, thanks to
the divergence-flux theorem, we transform the volume
integral on each (D;) sub-domain into a surface integral
on each (C;) boundary of the corresponding sub-do-
main. We obtain

(Liz).Z /VQDA&
+Z/ Q"A‘R%(vu)-ﬁ,f(W) Q.| du..
i=1 v Di i
(A.6)

The first arithmetic summation is split into two parts so
as to distinguish the interfaces C;; — which appear twice —
from the external boundaries (C,), which gives

dv;.

i=1 JCi

/ Q- it + 7/Q, - i) ds,
i# /G

+Z/@@@MM

By following the same calculation scheme as above, the
RHS of Eq. (A.1) writes first

(Z,L°[Z")) Z/

and then
(Z,L[z7)) = "L/fuﬁ,im
i=1 G
o3 [ <%u>ﬁ,<%x>élm,
i=1 i “
(A7)
with

i/ fol:iyﬁidsi
=1 JG

= /C (UR, -ii; + UR, - i) ds;
# i

-3 / U.R, - i ds,-

The volume integrals of Eqs. (A.6) and (A.7) are iden-
tical. It thus remains to show that the surface integrals
are also identical so as to prove that the adjoint problem
is effectively defined by Egs. (A.3),(A.4a)—(A 4c).

The difference between the surface integrals writes

i; + UR,; - i) ds;;

=
=l
S
+
|
el
=i

Owing to the boundary conditions Egs. (A.2) and
(A.4c) we obtain
v,
Us _ U,—=0.
Ya Ya

7,Q, T + UR, - fiy = V,

The boundary contribution vanishes. Owing to the in-
terface conditions

i U, —U; S U - U

Q 717 Qj'n/'i: ! )
Yij Yiji

S /A A A

R; n; = : ) Rj'njl: /7
Yij Yiji

the integrant, in the interface integrals writes
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_ 1 1 _ 1 1 _ 1 1
Vui| ——— |+ WUl ——+— | +VU{ ———
Yij o Vi ' Yij Vi Yii Vi

_ 1 1
+ V,-U,-(——+—)
Vi Yij

and, by noticing that y;; = y;; is a consequence of the flux
continuity on the interface, we observe that the contri-
bution of interfaces vanishes too.

We conclude that the Egs. (A.3),(A.4a)—(A.4c) define
the adjoint problem.

Appendix B. Some properties of the eigenelements

Let Z* and Z*' be two solution vector fields of the
eigenvalue problems

L[Z] = »Zf, L[Z"] =w;Z",

where Z* (resp. Z*') verifies the interface conditions and
the homogeneous boundary conditions of the problem
(resp. of the adjoint problem).

In accordance with the basic relationship Eq. (A.1),
we may write

(L [ZkLZ*]) _ <Zk,L* [Z*]]>7

and, since Z' (resp. Z*') are solutions of the above

eigenvalue problems

(25, 2"y = (ZF, ' 2"

or

(o — @})(ZF 27"y = 0. (B.1)
The Z' field is orthogonal to the Z*' field.

In an explicit form, the previous first eigenvalue
problem, writes

1 - =
v : th = wkl],’k
PiCi .
; Qk ’ 1= 17” )

Aot UG
T T
Qf'ﬁij'i‘df'ﬁjizq

o
Uf = U} =y, Q) - i
Vi #]7 Pe Cij7
U: _y(P)dk ﬁotO = 07 P e Crp

o

Since the thermal properties of the media are real-valued
coefficients, the conjugate problem may be written

1 - . _
~-— 9 (-Q) = U}
pPiCi
; - , i=1n
_Agur _Q_ @k(,Qf)
T; T;

=k

2k -
- Q; -n; —Q;-nj; =0,
- - 2k
Uik - Uf = —y;(—Q; - my)
Vi#j, PeCy

Uf +y(P)(_6a . ﬁac()) = 0, Pe C“

This writing shows, firstly that, if wy is an eigenvalue, @,
is also an eigenvalue, secondly that the vector field which
is defined by

{Vl_k:(_]i" and R'f.‘:féf, i=1,n}

is a solution of the eigenvalue problem
L>:< [Z*k} _ @kz*k

when Z** = (V*, R")" verifies the homogeneous bound-
ary conditions of the adjoint problem.

We conclude that this vector field is a solution of the
adjoint eigenvalue problem when w; = @;. The orthog-
onality property Eq. (B.1) shows that the above-defined
Z** field is the Z* homologous field.

The eigenelements of the adjoint problem are
immediately deduced from the eigenelements of the
problem.
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